Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries
نویسندگان
چکیده
The application of hematite in lithium-ion batteries (LIBs) has been severely limited because of its poor cycling stability and rate performance. To solve this problem, hematite nanoparticles with oxygen vacancies have been rationally designed by a facile sol-gel method and a sequential carbon-thermic reduction process. Thanks to the existence of oxygen vacancies, the electrochemical performance of the as-obtained hematite nanoparticles is greatly enhancing. When used as the anode material in LIBs, it can deliver a reversible capacity of 1252 mAh g-1 at 2 C after 400 cycles. Meanwhile, the as-obtained hematite nanoparticles also exhibit excellent rate performance as compared to its counterparts. This method not only provides a new approach for the development of hematite with enhanced electrochemical performance but also sheds new light on the synthesis of other kinds of metal oxides with oxygen vacancies.
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملElectrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)
PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملElectrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries
The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...
متن کامل